In-Phase & Quadrature Sinusoidal Components Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

### In-Phase & Quadrature Sinusoidal Components

From the trig identity , we have

From this we may conclude that every sinusoid can be expressed as the sum of a sine function (phase zero) and a cosine function (phase ). If the sine part is called the in-phase'' component, the cosine part can be called the phase-quadrature'' component. In general, phase quadrature'' means 90 degrees out of phase,'' i.e., a relative phase shift of .

It is also the case that every sum of an in-phase and quadrature component can be expressed as a single sinusoid at some amplitude and phase. The proof is obtained by working the previous derivation backwards.

Figure 4.2 illustrates in-phase and quadrature components overlaid. Note that they only differ by a relative degree phase shift.

Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work] [Order a printed hardcopy]